

UNESCO 6TH AFRICA ENGINEERING WEEK AND 4TH AFRICA ENGINEERING CONFERENCE 15th – 21st September, 2019

Engineering Numbers & Needs in the SADC Region

PRESENTER : Allyson Lawless

DATE : 18th & 19th September, 2019

Avani Victoria Falls Resort, Livingstone, Zambia

Why the study?

- Industrialisation: Do we have adequate engineering capacity to support the Industrialisation Strategy (2015-2063)?
- Economic and social infrastructure: Do we have adequate engineering capacity to develop, upgrade, operate and maintain economic and social infrastructure to support the Strategy?
- Engineering students and graduates: Are they being adequately educated and trained?
- **Engineering experts:** Are we developing engineering experts and are we using their expertise to develop skills, and carry out long-term planning?
- Gaps and recommendations: Where are the gaps and what policies and programmes are required?

Engineering sectors' contribution to GDP

The flow of skills

Elements of the study

- Determine numbers in the workforce
- Determine needs based on current workload, demands of policies and planned projects
- Determine inflows from higher education and immigration
- Determine the outflows e.g. emigration, retirement etc.
- Identify successful initiatives in place and understand lessons learned
- Determine gaps and how to address them by following existing successful models, and/or developing innovative solutions

The numbers

	NUMBER	TOTAL IN THE	REGIS	TERED	GRAD	GRADUATES AS			
CATEGORY		WORKFORCE	REGISTERED	% REGISTERED	IN 2015*	% FEMALE	A % OF THE WORKFORCE		
Engineers		114 579	34 722	30%	9 875	22.0%	9%		
Technologists and technicians**		114 281	12 746	11%	15 607	24.7%	14%		
TOTAL		228 860	47 468	21%	25 482	23.7%	11%		
* Totals are understated as graduation data from some countries is incomplete – see Figure 23									

Totals are understated as graduation data from some countries is incomplete – see Figure 23

- 68 engineering practitioners per 100,000 population in SADC ranging from 531 to 18
- 850 engineering practitioners per 100,000 population in the USA
- 1 160 engineering practitioners per 100,000 population in the UK

^{**} Technologist and technician categories are not recognised in all countries – see Table 24

Ratios per Member State

Engineering practitione per 100 000 population

% engineering practitioners per sector

% engineering practitioners per discipline

Challenges

Schooling – lack of teachers, resources and poor maths and science passes

Higher education –
under-resourced, too
many entering,
graduate number
and calibre
challenges

Graduate training –
unemployed
graduates and
limited investment
in graduate training

Professional
development —
little investment
in growing
experts

Investment – lack of investment in infrastructure development and maintenance

Public sector –
technical capacity
significantly
reduced over the
years

Use of service providers – often used to the exclusion of local skills, goods and services

Agriculture and rural

development –
limited investment to
assist and grow
smallholders and rural
communities

Higher education – different models

Education Level							
School	SADCQF						
8							
9	1						
10	2						
11	3						
12	4						
13	5						
Tertiary							
Under-	6						
graduate	7						
graduate	8						
Master's	9						
Doctorate							
	10						

Graduation trends 2005-2015

Qualifications framework and accreditation

Policy

Recommend adoption of the graduate attributes as defined by the IEA in the:

- Washington
- Sydney
- Dublin Accords

for engineer, technologist and technician qualifications

Activity

Form a working committee under the TCCA to:

- Set the level of technician, technologist and engineer qualifications on the SADCQF
- Determine the approach to accreditation, suggest not restructuring all qualifications but aligning graduate attributes per category
- Determine a method of assessing institutions who wish to achieve the IEA standards
- Develop milestones for institutions to achieve over a 10- or 15-year period to achieve the required standards to become signatories
- Review and align where necessary, technician qualifications required per discipline and country

Graduate development

Policy

 Recommend that all countries develop and support graduate training programmes

Activity

Form working group from successful programmes to document and share best practice and consolidate guidelines for the region – must include:

- Suggested activities per discipline and developing a training plan in the workplace and for groups
- Degree of complexity of work required per category of registration
- Guidelines for mentors (internal and external) and supervisors
- Suggested reporting methods
- Methods of assessing progress
- Guidelines for secondments
- Suggested methods of funding such programmes

Registration numbers

	CATEGORY									METRICS		
	GRADUATE/CANDIDATE-IN-TRAINING				PROFESSIONAL				COMPARISONS		%	
COUNTRY	Engineer	Technologist	Technician	Certificated	Engineer	Technologist	Technician	Certificated	Total professional	Engineering workforce	% professionally registered	
Angola	506	-	-	-	3 337	-	-	-	3 337	9 000	37.1%	
Botswana *	1 542	297	1 201	-	1 272	123	357	6	1758	6 000	29.3%	
Eswatini	12	3	17	2	36	6	6	-	48	1 600	3.0%	
Madagascar	-	-	-	-	765	-	-	-	765	11 000	7.0%	
Malawi	-	-	-	-	706	423 TE	163	-	1 292	3 200	40.4%	
Mauritius	-	-	-	-	851	-	-	-	851	5 000	17.0%	
Mozambique	1 225	-	-	-	1 868	-	-	-	1 868	11 000	17.0%	
Namibia	452	321 IE	197	-	506	201 IE	102	-	809	2 800	28.9%	
South Africa	7 749	4 385	6 674	281	15 862	5 513	3 921	966	26 262	110 000	23.9%	
Tanzania	9 428	661	-	-	5 699	409	-	-	6 108	30 000	20.4%	
Zambia	-	-	-	-	2 066	566	483	-	3 115	12 000	26.0%	
Zimbabwe	-	-	-	-	1 754		473	-	2 227	7 600	29.3%	
TOTAL	20 914	5 667	8 089	283	34 722	7 241	5 505	972	48 440	209 200	23.15%	

^{*}Candidates includes those in the Registered, but not Professional categories

Registration alignment

Policy

Recommend
 adoption of the
 IEA registration
 standards,
 initially for
 engineers and in
 time for other
 categories

Activity

Form a working committee under the TCCA to agree on:

- Functionality to be covered per body and develop framework for Engineering Profession Acts
- Who should be registered and the definition of engineering work
- Minimum period of graduate training and guidelines on activities to be covered
- Methods of assessment and reviewing professional registration applications
- CPD requirements and period and approach to renewing registration

Developing tomorrows' leaders

- **Graduates** development to professional registration required
- Independent practitioners grow in leadership, expertise and complexity and range of work
- Team leader develop to manage teams in area of practice
- Technical manager develop to manage teams, budgets, corporate responsibilities, stakeholder engagement, and be recognised as an expert in area of practice
- General manager develop to be technical director or general manager, and have a national and international profile

Recommendations

 Support ongoing development including CPD, post-graduate and management studies and linking mid-career staff to serve as understudies to international experts

Public sector capacity challenges

- Most Ministries report vacancies low salaries, and in some cases a moratorium on appointments are a challenge in terms of filling vacancies
- Public sector staffing reducing, while number of graduates continue to increase
- In some countries, only registered personnel can be employed, so no opportunity to develop graduates
- No capacity to plan or manage service providers, who have free rein which impacts on the quality delivered and final cost
- No authority to make **decisions** w.r.t. suppliers, service providers, appointment of staff and decisions by non-technical staff often limited or inappropriate
- 'Savings' cost countries significantly in terms of neglect of infrastructure

Recommendations

- Appoint **experienced** engineering professionals into decision-making posts
- Appoint graduates and train them through the ranks to develop as infrastructure leaders of tomorrow

Alignment of service provider conditions

Policy

Recommend
 alignment of
 approaches and
 threshold below
 which only local
 service providers
 can be used

Activity

Set up sub-committee under TNF to work on aligning:

- Criteria for classifying contractors and limits to be set on the size of projects on which international and SADC contractors may be appointed
- International service provider conditions include that designs must be checked and approved by local engineers and calculations and operating manuals must be provided in the local official language
- Conditions for graduates, technicians and trades to be trained in a structured manner on all contracts and for training to be monitored
- Requirement for use of local labour and materials
- Turnkey projects conditions to include for local supervision to ensure enforcement of quality delivery

Numbers & Needs

Numbers influence by:

- Level of investment
- Levels of service
- AIDI
- Manufacturing level of technology
- Commitment to higher education
- Commitment to strengthening the public sector

Africa Infrastructure Development Index (AIDI):

extent, type & condition of services

COUNTRY	RATING 2018	AIDI 2003	AIDI 2018	% INCREASE	WSS	ICT	ELECTRICITY	TRANSPORT
Angola	29	7.3	19.04	161%	40.14	11.78	6.4	1.87
Botswana	10	24.73	36.79	49%	80.82	30.63	21.51	22.28
DRC	50	4.02	8.15	103%	31.93	6.99	1.85	1.64
Eswatini	17	13.22	25.76	95%	61.6	18.32	5.78	8.36
Lesotho	35	12.83	16.01	25%	54.56	16.35	4.11	7.41
Madagascar	46	3.14	10.73	242%	23.42	6.45	0.95	3.01
Malawi	25	11.51	21.02	83%	65.84	7.02	2	4.83
Mauritius	5	42.1	76.79	82%	97.51	58.67	39.86	38.39
Mozambique	44	5.88	12.49	112%	27.11	11.18	12.04	2.02
Namibia	13	24.72	28.65	16%	63.34	22.09	10.54	15.49
Seychelles	1	47.43	94.32	99%	96.87	59.78	63.81	50.32
South Africa	4	46.07	78.53	70%	79.99	76.94	74.86	21.91
Tanzania	43	5.17	12.54	143%	28.16	10.43	1.82	3.27
Zambia	23	14.42	22.29	55%	48.74	14.93	14.08	4.71
Zimbabwe	19	22.48	24.52	9%	53.97	16.36	10.38	11.69

Summary of recommendations

- Expand school support to include online learning
- Rationalise the number of higher education institutions offering engineering
- Align and accredit engineering qualifications considering international standards
- Institutionalise graduate training
- Align registration processes considering international standards
- Align service provider and construction council conditions
- Re-populate public sector structures with experienced engineering capacity
- Invest in agriculture and in particular support of smallholders
- Invest in rural development and services to rural communities
- Invest in infrastructure, operations and maintenance to support the growth of manufacturing and mining
- **Invest** in data collection and system developments
- **Engage** with the profession A National Engineering Advisory Team (NEAT)

